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Abstract 

A new method is used to analyze polytypes of SiC and 
ZnS by regarding the polytype as a modulated 
structure with ideal electron-density modulation. To 
resolve a phase problem appearing in the density 
modulation, the square of the weighted R factor and a 
penalty function with some value outside the physically 
reasonable range of the occupation probability of 
atoms are minimized simultaneously by the least- 
squares method. The convergence was very smooth for 
known structures of 21H SiC and 66R ZnS polytypes, 
even though the starting point had large R factors 
(0.61 and 0.67), and the correct results were automati- 
cally obtained. 

Introduction 

Many polytype structures of SiC and ZnS have been 
reported so far and a considerable number of them are 
already known. (See, for example, Verma & Krishna, 
1966; Shaffer, 1969.) However, there are many 
unresolved structures which have large periods. As is 
well known, the determination of the structure of a SiC 
(or ZnS) polytype is the problem of determining the 
stacking sequence of three SiC (ZnS) layers which 
consist of atoms located at 0,0,z; -~,--3-,z,l 1 . and -~,-3-,z1 1 in 
the hexagonal unit cell. To analyze such a polytype 
structure, the trial-and-error or the direct method has 
so far been used (Verma & Krishna, 1966; Tokonami, 
1966; Dornberger-Schiff & Farkas-Jahnke, 1970). For 
polytypes with long periods, it is not easy to determine 
the sequence of layers by these methods because of the 
multitude of sequences of the same period and 
considerable effort is necessary even in the direct 
method which is considered to be the most powerful 
method for the long-period polytypes. The method 
developed here is very simple and effective as shown in 
the following. The method is applied to known 
structures of 2 1 H  SiC and 66R ZnS polytypes to 
exemplify the analysis based on the new method for 
cases with space groups P3ml and R3m since almost all 
polytypes of SiC or ZnS with long periods have these 
space groups. The periods of these examples are 
comparatively long. Therefore, the success of auto- 
matic analyses for these examples encourages us to 
expect that analyses of polytypes with longer periods 
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are performed more easily by the application of this 
method. In the following, the method is explained for 
the case of SiC. The same method is applicable to ZnS. 

Polytype as a modulated structure 

All polytypes of SiC have a fundamental hexagonal 
unit cell with a = b = 3.08, c = 2-52 A except for the 
trivial cubic case of the Zhdanov symbol [~].  The 
coordinates of the atoms are given in terms of these 
hexagonal axes as 

0 , 0 , p ;  1 1 . 1 1 ~,-~,v,-~,~,v for Si 
0 , 0 , Z  n t- P;  1 1 1 1 ~,-~,z + v; -~,~,z + v for C (1) 

with v and z = ~ independent of the polytype. 
According to the usual notation, we call these three 
sites A, B, C in order. We can regard the structure as 
the modulated structure: Si and C atoms occupy all 
sites (v -- 0, _+ 1, . . .)  but with the occupation probability 
of one or zero. Then we have a sequence of occupation 
probabilities for A, B and C sites. For example, for a 
simple structure of 6 H  with the stacking sequence 
ABCACB .... the occupation probability for the A site 
is given by a periodic sequence 100100 .... for the B site 
010001 .... and for the C site 001010 .... In general, a 
structure with period M is designated by three 
sequences of M digits with one or zero for A, B and C 
sites. Therefore, this can be regarded as a special case 
of the density modulations. 

Modulated structure analysis of polytypes 

As shown by de Wolff (1974), the modulated structure 
is conveniently described in terms of four-dimensional 
space. According to his idea, a modulated structure 
with a long period is described by a structure with short 
period in the four-dimensional space. The unit vectors 
in this space are given by a I = a, a 2 = b, a 3 = c - d/M, 
a4 = d, where d is a unit vector perpendicular to the 
usual three-dimensional space. Therefore, a vector x = 
xl a + x2 b + x3 c in the three-dimensional space is 
described by x = x 1 a 1 + x 2 a 2 + x 3 a s + (xa/M)a4, that 
is, x 1, x 2, x 3 are the same as those referring to a, b, c 
and x 4 = xa/M. In this notation, the sequence of 
occupation probability of the ~tth site (# = A, B, C) is 
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represented by P"(x'~) as a periodic function of x~ = 
(x~ + v)/M (v = 1, 2 . . . .  , M, x~ = 0 for Si and x~ =~} 
for C). [We do not specify Si or C because P"(x~) has 
the same value for Si and C in the same layer.] 

In the four-dimensional description, the reflection ap- 
pearing at h = h~a* + h2b* + (h 3 + h4/M)e* (h 4 is 
an integer within the range +M/2) in the three- 
dimensional space is regarded as the projection of a 
lattice point h' = h I a* + h 2 a~' + h 3 a~ + h 4 a T in the 
four-dimensional space, where h l, h 2, h a, h 4 a r e  integers 
and a*, a*, a 3, a* are the unit vectors reciprocal to al, 
a2, a3, a 4 and are given by a*, b*, e*, (1/M)e* + d. The 
structure factor at the lattice point h' in the four- 
dimensional space is given by (de Wolff, 1974) 

1 

F' (hl,h2,ha,h 4) = ~. f dx~ f "  P" (x~) 
u O  

4 

x exp 2hi Y h~ x~, (2) 
/ = 1  

where f "  is the atomic scattering factor of the gth atom 
at h in the three-dimensional reciprocal space. When h' 
is projected onto the three-dimensional space, all the 
lattice points specified by hi, h 2, h a - rn, h 4 + mM (m is 
any integer and h 4 is an integer within the range +34/2) 
are projected onto the same point h in the three- 
dimensional space. Therefore, to obtain the structure 
factor in the three-dimensional space, these contri- 
butions must be summed up. If we sum (2) over all 
these reflections, the projected structure factor is given 
by 

1 M 
F(h"hE'ha'h4) = --M Z Z f "  P"(x~) 

p v = l  

4 

× exp 2m Z hix~' (3) 
t = l  

where x~ = (x~ + v)/M (x~ = 0 for Si and x~ = ~ for 
C) and h 4 is an integer within the range of +34/2. 

As mentioned before, P"(x~) is a periodic function 
of x~, so that this can be expressed in terms of the 
Fourier series 

1 
P"(x'1) = ~ Z {e~" exp (2mnx~) 

/7 

+ P"_~ exp (-2ninx~)l, (4) 

where P~" is the complex amplitude of the nth-order 
harmonics and P"_, is its complex conjugate. Since the 
structure factor (3) depends only on discrete values of 
x~ = (x~ + v)/M (v = 1, 2 . . . .  , M), n up to M/2 for 
even M or up to (M -- I)/2 for odd M must be included 
in (4). 

In modulated structure analysis, the R factor is 
minimized by taking the complex amplitudes as 
variable parameters. Substituting (4) into (3) and 

taking the summation with respect to v, we have the 
intensity for the reflection h 1 h2h 3 h 4 except for h 4 -= 

M/2 for the even M case with the following expression. 

3 

I(hph2,h3,h4) = I~.f"  P%, exp (27d ~ h i x~')l 2. (5) 
/a i = 1  

This intensity is invariant for the uniform shift of P~". If 
we take different phase shifts for different n, we have 
different occupation probability giving the same inten- 
sity. Therefore, the analysis in which the square of the 
weighted R factor, R 2 = ~ w(IFol -- IFct)2/~ WlFo 12, 
is minimized does not necessarily lead to correct 
occupation probability: the refinement may give a 
physically unreasonable result, that is, the occupation 
probability exceeds one or is less than zero. This is a 
general conclusion for the density (or substitutional) 
modulation (Yamamoto, 1981a). However, in the 
present case, P"(x~) at x'~ = (x'~ + v)/M (v = 1, 2 , . . . ,  
m) must be zero or one. Such a restriction makes it 
possible to determine the phase of Pn" and therefore 
P"(x~). One method to obtain the occupation pro- 
bability (4) is to minimize R 2 and the penalty function 
PF = Y,, {[ P" (x ~) -- 1 ] P" (x 2) } 2/M simultaneously by 
the least-squares method since the latter function takes 
minimum value zero when all the P"(x'D (v = 1, 2, ..., 
M) take one or zero. Another penalty function (PF) 
takes a value g21p~'(x~)[2/M for P"(x~) < 0 and 
g21p"(x2) - l12/M for P"(x'~) > 1 and zero otherwise, 
where g designates the gradient of the penalty function 
which is taken to be two in the present analysis. Both 
functions prevent the occupation probability becoming 
non-physical. These two PF's  were tested and the latter 
gave a good result: the convergence was very smooth 
and the correct results were automatically obtained. 
Therefore, the refinements mentioned later were per- 
formed with the latter penalty function. 

S y m m e t r y  

Symmetry of a modulated structure is described by a 
space group in four-dimensional space. This is a 
supergroup of the three-dimensional space group 
(Janner & Janssen, 1977). Therefore, we can consider a 
four-dimensional space group including the three- 
dimensional one as a subgroup. In SiC polytypes, the 
only possible three-dimensional space groups are R3m, 
P63mc, P3ml (Verma & Krishna, 1966). The four- 
dimensional space groups corresponding to these space 
groups are easily obtained with the method proposed 
by Yamamoto (1981b). Corresponding to R3m, we 
have a group generated by (C~I0,0,0,0), (av110,0,0,0) 
and centering translations (El 1 1 /~ l~ ( E l  1 1 a 1~ " i i , - - 3 " , v , - - ~ j ,  - -  ~ , ' J ,v ,~ j / ,  

where we use the same symbol for the rotation operator 
as in the three-dimensional space because the matrix 
elements of the first 3 x 3 part are the same as the 
usual matrix representation of the rotation operator, 
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and the translation vector associated with this rotation 
operator is represented by its a t components (i = 1, 2, 
3, 4) (Yamamoto, 1981b). (For the symbol used here, 
see Bradley & Cracknell, 1972.) Similarly, for P63me, 
we have the corresponding four-dimensional group 
generated by (C+10,0,0,~), (a~ll0,0,0,0), and for P3ml  
the group generated by (C+ I 0,0,0,0), (avll0,0,0,0). 
Components of a vector in the four-dimensional space 
are transformed by a symmetry operator (R I r) in the 
four-dimensional space group as 

4 
x'~= Y R t j x j +  r t ( i =  1, 2, 3,4),  (6) 

J=l 

where R u is the 0" element of the 3 + 1 reducible matrix 
(de Wolff, 1974), the 4i a nd /4  (i = 1, 2, 3) elements of 
which are zero, and r t, the a t component of the 
translation vector. On the other hand, the occupation 
probability is transformed as 

P(x'4) = e(x4). (7) 

The symmetry operator transforms an atom into itself 
or another atom of the same kind. The former case 
generally restricts the shape of a function P"(x~)  
(though the examples treated here have no restriction) 
while the latter relates the occupation probability of an 
atom with that of the other atom (Yamamoto, 198 l b). 

For the case of R3m, the centering translation 
1 1 1 (EI~,--~,0,--~) transforms A, B, C sites into B, C, A 

sites, respectively. Therefore, from (4), (6), (7), we have 

~ ( x ~ )  = e~(x~ + ~). (8) 
This leads to 

P~, = Pn A (exp 2 nin/3) for any n. (9) 

Similarly, we have 

pc  = p~ exp (2nin/3) = PAn exp ( -2n /n /3 )  for any n. 
(10) 

In particular, this gives P~3n = P~3n = P~3n (n = O, 1 . . . .  ). 
Other operators in the four-dimensional space group do 
not give any additional relation or restriction for the 
occupation probability. 

From similar considerations for the case of P63mc 
we have 

P~n = (--1)n P~n. (11) 

For P3ml ,  the P,~(~t = A, B, C) are independent and not 
restricted. 

In addition to these relations derived from the 
space-group symmetry,  another relation exists for SiC: 
the occupation probability satisfies the relation Pa(x~) 
+ Pn(x'~) + pC(x'~) = 1 for all atoms in a layer, where 
x~ = (x~ + v)/M (v = 1, 2 , . . . ,  M). This gives 

P~ + P~0 + P~0 = 1 (12) 

and 

P ~ + / ~ , + p c = 0  f o r n > _ l .  (13) 

From (9), (10), (13), we have 

/~n [ 1 + exp (2nin/3) + exp (-2nin/3)] = 0 

These relationships give 

and 

f o r n >  1. 
(14) 

P~0 = ]  (15) 

P~3,=0 ( n = l , 2  . . . .  ) (16) 

for the case of R 3m, and similar consideration leads to 

A P2n+l = 0 (F /=  1, 2, . . . )  (17) 

e~n + 2P~2n = 0 (n = 1, 2 , . . . )  (18) 

for P63m¢. Therefore, in these two cases, /~, [n 4= 0 
(rood 3)] and p n (n > 0) are independent parameters,  
respectively. On the other hand, two of P~,, P~, P~, (n _> 
0) are independent in the case of P3ml .  With these 
parameters, the refinement is made as shown in the 
following. 

Structure refinement 

In the refinement of the polytype structure, we 
calculate, instead of F(h~,h2,h3,h4), the periodic inten- 
sity distribution function S(h~,h2,ha,h4) which is 
defined by 

F(hl,h2,h3,h4) 
S(hl,h2,h3,h4) = M, (19) 

Fo(hl,h2,h3,h4) 

where Fo(hl, h2,h3,h4) is the structure factor of the 
structure consisting of one SiC layer with the period M, 
and is given by f s i  + f c  exp{3nih4/2M}. 
S (h 1, h2, h3, h4) is the structure factor for the point atom 
with one electron located at the Si site and has complete 
information on stacking sequences. Therefore, this is 
obtained from (3) by setting f "  = 1. With this structure 
factor and the least-squares method mentioned before, 
two cases of 21H SiC with space group P3rn 1 and 66R 
ZnS with space group R3m were refined using data 
given by Inoue, Komatsu,  Tanaka & Inomata (1973) 
and Farkas-Jahnke & Dornberger-Schiff (1969). 

(a) 21H SiC. 21H SiC shows the extinctions 
hlh2h3h4 with h 1 - h 2 4: 0(rood 3) and h 4 = 0. 
Therefore, from (5) and (12), we have P~0 = P~0 =/~0 = 
]. In the least-squares fitting of S o and S c, we take the 
real and imaginary parts ofP~, - / ~ n  and P~, + P~, - 2/~, 
(1 _< n < 10) as independent parameters and the starting 
point was selected so as to have a value 0.05 or - 0 . 0 5  
for all variable parameters. The usual R factor R = 
Y (I S o I -- I S c I) /~ I S o I of this starting point was 0.61. 
After 20 cycles, we had R = 0.03, PF = 0.03 and a 
result with Zhdanov symbol [534333], in agreement 
with the result of Inoue et al. (1973). The occupation 
probabilities of the initial and final results are shown in 
Fig. 1. 
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(b) 6 6 R  Z n S .  I n  th is  c a se ,  P~0 = P~o = P~0 = ] a n d  

v a r i a b l e  p a r a m e t e r s  a r e  t h e  rea l  a n d  i m a g i n a r y  p a r t s  o f  

P~n up  to  n = 32  e x c e p t  fo r  n = 0 ( m o d  3). I n  t h e  rea l  
a n a l y s i s ,  n o n - o b s e r v e d  r e f l e c t i o n s  o w i n g  to  t h e  cen -  

t e r i n g  t r a n s l a t i o n  a r e  d r o p p e d .  T h e n  t h e  s t r u c t u r e  

f a c t o r  c a n  be  o b t a i n e d  f r o m  a t o m s  a t  o n l y  t h e  A site 

b e c a u s e  a t o m s  at  t h e  B a n d  C s i tes  g ive  t h e  s a m e  

c o n t r i b u t i o n s  as  t h e  A site fo r  all o b s e r v e d  r e f l ec t ions .  

T h e  ini t ial  p a r a m e t e r s  w e r e  t a k e n  as  0 . 0 5  o r  - 0 . 0 5  fo r  

all v a r i a b l e  p a r a m e t e r s ,  w h i c h  g a v e  R = 0 . 6 7 .  A f t e r  15 
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Fig. 1. Occupation probabilities of 21 H SiC: (a) starting point, 
(b) final result. This shows the stacking sequence of 
BA CBABCA CBA CBCABA CBCA... represented by the 
Zhdanov symbol [435333], which is equivalent to [534333] 
determined by Inoue et al. (1973). 
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Fig. 2. Occupation probabilities of 66R ZnS: (a) starting point, (b) 
final result. This shows the stacking sequence of one third, which 
is given by ACBACABCABCACBABCABCBA. The rest is 
obtained from this by cyclic replacement of A, B, C. The 
structure is represented by the Zhdanov symbol [7735]3 which 
is equivalent to [7753] 3 determined by Farkas-Jahnke & 
Dornberger-Schiff (1969). 

c y c l e s ,  w e  h a d  R = 0 . 0 4 ,  P F  = 0 . 0 4 .  T h e  f inal  r e su l t  

s h o w e d  a s t r u c t u r e  [7753]3  in a c c o r d a n c e  w i t h  t h e  

r e su l t  o f  F a r k a s - J a h n k e  & D o r n b e r g e r - S c h i f f  (1969) .  

T h e  init ial  a n d  f inal  o c c u p a t i o n  p robab i l i t i e s  a r e  s h o w n  

in Fig .  2. T h e  init ial  a n d  f inal  p a r a m e t e r s  o f  t h e s e  t w o  

c a s e s  a r e  g iven  in T a b l e s  1 a n d  2 a n d  t h e  s t r u c t u r e  

f a c t o r s  a r e  l i s ted  in T a b l e  3. 

T a b l e  1. The initial and final parameters o f  the 21 H 
SiC polytype 

Parameter Initial value Final value 

P~ = PoS = P~o 0.3333 0.3333 
p~ _ p s 0.05 - i0.05 0-0034 + i0.0114 
P~ - P ~  --0.05 + i0.05 0.0062 + i0.0008 
P~ - P~ 0.05 - i0.05 0.0988 - i0.0580 
P~ - P ~  - 0 . 0 5  + i0.05 0.0695 + i0.0275 
P~ - P~ 0.05 - i0.05 -0 .0693 + i0.0445 
p ~ _  pn --0.05 + i0.05 O. 1108 + i0.0779 
P~ -- P7 s 0.05 -- /0.05 -0 .4151 - iO. 1543 
P~ -- P~ --0.05 + i0.05 --0.1630 -- i0.0582 
P~ - P~ 0.05 - i0.05 -0 .0857  + i0.0803 
P'~0- P~o - 0 . 0 5  + i0.05 -0 .0598  + i0.1862 
P~ + P f -  2P~ 0.05 - i0.05 0.0343 - i0.0059 
P~ + P ~ -  2P~2 - 0 . 0 5  + i0.05 -0 .0097  - i0.0436 
P~ + P ~ -  2P~3 0.05 - i0.05 0.0181 - i0.0443 
P4 a + P4 B -  2/~4 - 0 . 0 5  + i0.05 0.0953 + i0.1166 
P~ + P~ - 2P c 0.05 - / 0 . 0 5  0.0469 + i0.0047 
P~ + P ~ -  2P~6 - 0 . 0 5  + i0.05 0.0557 - i0.0465 
p~ + pn _ 2/~7 0.05 - i0.05 0.0962 - i0.0827 
P~ + P~ - 2P~s - 0 . 0 5  + i0.05 -0 .0570  + i0.1006 
P~ + P~ - 2P~9 0.05 - i0.05 0.0937 - i0.0260 
P~o + P~o-- 2P~1o --0.05 + i0-05 --0.2008 + i0.0383 

T a b l e  2. The initial and final parameters o f  the 6 6 R  
Z n S  polytype 

Parameter Initial value Final value 

P~ 0.3333 0.3333 
P~ 0.05 -- /0.05 0.0002 + i0.0169 
P~ --0-05 + i0.05 0.0057 - i0.0350 
P~ 0.05 -- i0.05 --0.0!02 - i0.0170 
P~ --0.05 + i0.05 0.0196 -- i0.0068 
P~ 0.05 -- i0.05 --0.0062 + i0.0076 
P~ --0.05 + i0.05 --0.0414 + i0.0224 
P'~o 0.05 -- i0.05 -0 .0652  - i0.0475 
P'~I --0.05 + i0.05 0.0411 +/0.0239 
P~3 0.05 -- i0.05 0.0719 + i0.0151 
P'~4 --0.05 + i0.05 --0.0290 + i0.0936 
P'~ 0.05 -- i0.05 0.0073 + i0.0280 
P'~7 - 0 . 0 5  + i0.05 - 0 . 0 0 2 7 -  i0.1291 
P'~9 0"05 -- i0"05 0 " 2 1 2 0 -  i0.0239 
P~0 --0.05 + i0-05 --0.1024 -- i0.1965 
P~2 0.05 -- i0-05 0.1607 + i0.0893 
P'~3 --0.05 + i0.05 0.1627 + i0-2742 
P~5 0.05 -- i0.05 0.2113 -- i0.1187 
P ~  --0.05 + i0.05 0.0446 + i0.0048 
P~s 0.05 -- i0.05 0.1653 + i0.0657 
P'~9 --0.05 + i0.05 - - 0 - 2 2 3 2 -  i0-0932 
P~I 0.05 - i0.05 --0.0563 -- i0.0825 
P~2 --0.05 + i0.05 0 - 0 3 1 0 -  i0.0736 
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Summary and discussion 

A new method for polytype analysis based on the 
theory of modulated structure is proposed. The method 
is easier than methods developed previously: the 
starting point seems to be arbitrary because the 
convergence was very smooth and the two cases gave 
the correct results starting from very large R factors. 
This method is therefore considered to be effective for 
the polytype analyses of SiC with longer periods or 
other polytypes. 

The smooth convergence seems to be due to the 
linear dependence of S(h 1 . . . .  , ha) on P~ and a suitable 
choice of the penalty function. When the penalty 
function was dropped in the least-squares refinement, 
the weighted R factor in fact rapidly converged within 
two or three cycles. In this case, however, some skilled 
technique is necessary to avoid the coefficient matrix of 
the normal equation becoming singular because the 
intensity of the satellite reflection is invariant for the 
uniform phase shift of the nth-order harmonics in (4) 
for all the atoms. [This is realized by replacing P~ by P," 
x exp (iq~,), where tp, is a real number independent of/~. 
It is clear from (5) that the intensity of the nth-order 
satellite reflections is invariant for such a replacement.] 
The method used here is as follows. The normal 
equation is normalized so that all the diagonal terms of 
the coefficient matrix are equal to one. After that, the 
damping factor is introduced by assigning the same 
value (0 .01-0 .5 )  to all the diagonal elements. This 

effectively functions to make a non-positive matrix 
positive and to turn the search direction towards the 
direction of steepest descent (see Kowalik & Osborne, 
1968). By introducing this damping factor, it is possible 
to avoid the appearance of the singular matrix in the 
minimization of only R2w . In particular, if we take small 
amplitudes for all P~", P"(x~) at all x~ = (x~ + v)/M (v 
= 1, 2 . . . . .  M) must be within the physical range, that 
is, 0 < P"(x~) <_ I. In that case, the penalty function is 
equal to zero, so that the introduction of the damping 
factor is inevitable to proceed with the refinement. In 
other cases, the penalty function may become zero at 
some step in the middle of the refinement. Therefore, it 
is desirable to introduce the damping factor in all the 
processes of the refinement for safety. Throughout the 
present analysis, a damping factor of 0-05 was used. 

The present work gives a new method of analyzing 
SiC polytypes. The method is general, so that it is 
applicable to the other polytypes recognized as one- 
dimensionally modulated structures without displacive 
modulation. If  the polytype includes the displacement 
modulation, the usual method of modulated structure 
analysis will be applicable (Yamamoto 1981a,b) 
because the phase of P~ can, in principle, be deter- 
mined owing to the presence of the displacive 
modulation. 

The author thanks Dr Z. Inoue for drawing his 
attention to the properties of SiC. 

Table 3. The observed and calculated structure factors, 
IS(100h4)l of 21 H SiC and IS(010h4) of  66R ZnS 

polytypes (x 1 O) 

21H 66R 

h4 So Sc h4 S o S c 
-10 38 37 -31 34 33 
-9  45 45 -28 61 59 
-8  70 68 -25 84 80 
-7  50 49 -22 62 60 
-6  48 47 -19 70 71 
-5  27 27 -16 9 9 
-4  44 42 -13 25 24 
-3  35 32 -10 28 26 
-2  16 15 -7  2 4 
-1 13 13 -4  5 6 

0 0 0 -1 4 6 
1 I0 9 2 11 12 
2 13 13 5 6 7 
3 17 17 8 16 15 
4 57 55 11 16 16 
5 13 13 14 34 33 
6 6 6 17 44 43 
7 119 117 20 75 73 
8 6 8 23 105 105 
9 31 28 26 14 15 

10 99 97 29 85 80 
32 26 26 
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